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ABSTRACT: We present results for the six-gluon scattering amplitude at one-loop. Since
our method is semi-numerical, it yields the result for arbitrary momenta and helicities of
the external gluons. We evaluate the colour-ordered sub-amplitudes with gluons, fermions
and scalars running in the internal loop. This is more than sufficient to give a complete
description of six-gluon scattering at one-loop in QCD. Combination of these results into
amplitudes with N' = 4 and N/ = 1 multiplets of supersymmetric Yang-Mills or with a
complex scalar in the internal loops allows comparison with analytic results in the literature.
The numerical results for most of the helicity combinations with loops of complex scalars

are new.
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1. Introduction

Phenomenology at the LHC often involves high multiplicity final states. For example,
backgrounds to Higgs searches involve processes such as PP — WTW ™ + 2 jets and
PP — tt + bb. Both these examples involve 2 — 4 scatterings. At leading order (LO) such
high multiplicity final state amplitudes can be evaluated using either numerical recursive
techniques [f]-B] or other numerical and/or algebraic techniques [fl-f].

However, O (ag), next-to-leading order (NLO) corrections to the scattering amplitudes
are desirable. Not only do NLO corrections give a first reliable prediction of total rates,
they also give a good error estimate on the shapes of distributions. At NLO the current
state of the art for hadron colliders are 2 — 3 processes. Thus NLO predictions for PP —
3 jets [, [Q] (based on virtual corrections of ref. [[1-[[3]) and PP — V + 2 jets [[4] (based
on virtual corrections of ref. [l -[i7]) are known, and codes for PP — t& + jet [1§, [L9]
and PP — H + 2 jets via gluon fusion [2(] are under construction. Other processes such
as PP — ViV, + jet and PP — V1 V5 V3 are now feasible.

By contrast the consideration of 2 — 4 processes is still in its infancy. In electroweak
physics the full one-loop electroweak corrections to e™e™ — 4 fermions were calculated
in Ref. 21, PJ]. However the calculation of NLO 2 — 4 QCD scattering cross sections
is currently unexplored. Such a calculation involves both the evaluation of the one-loop
six-point virtual corrections and the inclusion of the 2 — 5 scattering bremsstrahlung
contributions through Monte Carlo integration.

In this paper we consider the virtual corrections to six-gluon scattering which is rele-
vant for a calculation of PP — 4 jets. By considering the one-loop corrections to gg — gggg
we select the most complicated QCD six-point processes. If the amplitude is calculated in
terms of Feynman diagrams, the number of diagrams is very large and the gauge cancel-
lations between these diagrams is the most severe. These cancellations could be a concern



in a semi-numerical procedure; the six-gluon amplitude therefore provides a stringent test
of the method. In this paper we consider neither the bremsstrahlung contributions, nor
the one-loop processes involving external quarks, which are needed to obtain results for a
physical cross section.

The technique for the analytic calculation of the one-loop corrections to multi-gluon
amplitudes, which is relevant for this paper, is the decomposition of the calculation into
simpler pieces with internal loops of ' = 4 and N' = 1 multiplets of super-symmetric
Yang-Mills particles and a residue involving only scalar particles in the loops , PR3, @]
After recent advances 2§ -R], all supersymmetric contributions have been computed an-
alytically, however not all of the scalar contributions for six-gluon amplitudes (or higher)
are known yet. We present here numerical results for six-gluon contributions. For super-
symmetric pieces we provide completely independent cross-checks of analytical results.

Although all one-loop 2 — 2 and almost all of the currently known 2 — 3 ampli-
tudes were calculated using analytic techniques, we believe that semi-numerical or hybrid
numerical/analytic techniques offer promise for more rapid progress. This technique was
demonstrated recently for the case of the one-loop Higgs Boson plus four partons ampli-
tude [2Q].

Many methods have been proposed to calculate NLO amplitudes, both semi-numerical
B9-Ed] or numerical [, BF]. Of these methods only a few have actually been used to
evaluate one-loop amplitudes. Only by using the methods in explicit calculations one can
be sure that all numerical issues have been addressed properly.

In section P we discuss the colour algebra involved with the evaluation of a six-gluon
amplitude. The numerical techniques used in this paper are discussed in section [, while in
section dl the comparison is made with numerous super-symmetric and the few scalar results,
which exist in the literature. Finally, our conclusions in section f| summarize the paper.

2. Six-gluon amplitude at one-loop

At tree-level, amplitudes with n external gluons can be decomposed into colour-ordered sub-
amplitudes, multiplied by a trace of n colour matrices, 7'%. The traceless, hermitian, N, x N,
matrices, T, are the generators of the SU(IV,) algebra. Following the usual conventions for
this branch of the QCD literature, they are normalized so that Tr(7°T?%) = §?°. Summing
over all non-cyclic permutations the full amplitude Aﬁ}"ee is reconstructed from the sub-

amplitudes Agree (o) [, B3,

AT ({pi Ay ai}) = "2 30 T (T o) AR (p0 L p ) (2)
O'ESn/Zn

The momentum, helicity (£), and colour index of the i-th external gluon are denoted by
Di, i, and a; respectively. g is the coupling constant, and S,,/Z, is the set of (n — 1)!
non-cyclic permutations of {1,...,n}.

The expansion in colour sub-amplitudes is slightly more complicated at one-loop level.
Let us consider the case of massless internal particles of spin J = 0,1/2,1 corresponding to
a complex scalar, a Weyl fermion or a gluon. If all internal particles belong to the adjoint



representation of SU(N.), the colour decomposition for one-loop n-gluon amplitudes is

given by [i4],

[n/2]+1

Al (pishisai}) =g" Y D Grauelo) Afll(o), (2.2)

c=1 Uesn/sn;c

where [z| denotes the largest integer less than or equal to z and Sy, is the subset of S,
which leaves the double trace structure in Gr,,(1) invariant. The leading-colour structure
is simply given by,

Grp1(1) = No Te(T*---T). (2.3)

The subleading-colour structures are given by products of colour traces

Grp,e(1) = Te(T* - - - T%1) Te(T% ---T). (2.4)
The subleading sub-amplitudes A,,.~1 are determined by the leading ones AE;]I through

the merging relation [{5, 4, B3, 6]
AE}C>1(1,2,...,C— Lic,e+1,...,n) = (—=1)<! Z ALI;]l(Jl,...,Un), (2.5)

ceOP{a}{B}

where a; € {a} ={c—1,c¢—2,...,2,1}, B € {f} = {c,c+1,...,n—1,n}, and OP{a}{5}
is the set of ordered permutations of {1,2,...,n} but with the last element n fixed. The
ordered permutations are defined as a set of all mergings of «; with respect to the 3;, such
that the cyclic ordering of the «; within the set {«} and of the [; within the set {3} is
unchanged. In practice, since n is fixed, no further cycling of the set {3} is required. Thus
a complete description can be given in terms of the leading colour sub-amplitudes A,
alone.

The contribution of a single flavour of Dirac fermion in the fundamental representation,
(relevant for quarks in QCD) is

irac n a, a 1/2 Ao Ao (n
A ({pi, Ni ai}) = g SE/: (Lo To00) ALY () - (26)
O'EnZn

Simple colour arguments [14] allow one to demonstrate that this colour sub-amplitude is
the same as the leading colour sub-amplitude for a single Weyl fermion in the adjoint
representation defined in eq. (2.2).

Since the subleading colour amplitudes are not independent, we shall henceforth drop
them from our discussion. To simplify the notation we shall also drop the subscripts n
and c¢. The amplitude denoted by A will thus refer to leading colour amplitude with six
external gluons.

3. Method of calculation

The method we use is purposely kept as simple as possible. Especially in numerical methods
this is desirable for both keeping track of numerical accuracy and code transparency.



To generate all the required Feynman diagrams we use Qgraf [£7]. The Qgraf output
is easily manipulated using Form [[t§] to write the amplitude in the form

6 N
A(1,2,3,4,5,6) = > > Kpyopny (p1,€15- 516, €6) I (p1, - p6) (3.1)
N=2 M=0
where the kinematic tensor K depends on the purely four-dimensional external vectors and
contains all the particle and process information. The N-point tensor integrals of rank M
are defined in D dimensions as

dPr 1m o, [hm :
M1 N _ .= . 2 .= .
% (pl,...,pe)—/mD/Zdldz__.dN, di=({+q) ¢= 'Elpj, (3.2)
]:

and can be evaluated semi-numerically.

For N < 4 we use the method of [@, BY, which we already developed, tested and
used in the calculation of Higgs Boson plus four partons at one-loop [R(]. In general, the
basis integrals will contain divergences in € = (4 — D)/2 from soft, collinear and ultraviolet
divergences and the answer returned by the semi-numerical procedure will be a Laurent
series in inverse powers of e.

For the five (six)-point tensor integrals the method we use relies on the completeness
(over-completeness) of the basis of external momenta for a generic phase space point. We
therefore use a technique for tensor reduction which generalizes the methods of ref. [B1], pZ).
This technique is valid as long as the basis of external momenta is complete.! Assum-
ing we have a complete basis of external momenta we can select a set of 4 momenta
{Pky s Dkys Pis» Piy + Which form the basis of the four-dimensional space. We can then decom-

pose the loop momentum

4 4
P = Zz;l 'pkivl!:i =VH 4+ %; (dkz — dkifl) Ugi , (3.3)
where the vy, are defined as linear combinations of the basis vectors
4
U, = Z[G*I]@-jpﬁj, Gij = Dk; * Pk; » (3.4)
j=1

where G is the Gram matrix and
1
VH = D) Z(Tkz — rki_l)v,‘;, e =qs. (3.5)

With this relation it is now easy to reduce an N-point function of rank M to a lower rank
N-point function and a set of lower rank (N — 1)-point functions

4
1
M1 pnN _ pHICBM -1y s - H1-pM—1  pH1HM -1 1373
ARG v S (T IR ) ofer, (3.6)
i=1

LFor exceptional momentum configurations (such as threshold regions or planar event configurations)
this is not the case. Exceptional configurations can be treated using a generalization of the expanded
relations proposed in refs. @, E] This is beyond the scope of this paper.



where Iy ; is a (N — 1)-point integral originating from Iy with propagator d; removed.
More explicitly, choosing without loss of generality the base set {p1,p2,ps,ps}, we get

IKTIMHM(p17p27p37p47p57 .. 7PN) ==

= IA]‘L\L/}“.‘L”VI_1 (pl,pQ,p3ap4ap5, cee apN)VﬂM (pl’pQ’p3’p4)
1

t3 (IN™M (01 + p2s 3, P4, 55 - - - DN) — I ™ (P2, p3, P4, 5, - - - ,DN))

x vi™ (p1, 2,3, P4)

+ % (INYM (p1,p2 + p3, P4, D55 - - - oN) — I ™" (p1 + P2, D3, P45 D5, - -, PN))
x vy™ (p1, 2,3, P4)

+ % (INM " (p1,p2, p3 + Paspss - - o) — IS L™ (p1.p2 + P3, P4, D5, -, PN))
x v§™ (p1, 2, 3, Pa)

+ % (N ™M (p1,p2,p3,Pa + P55 - oN) — I ™ (1, D2, D3 + P4y D5, -, PN))
x vy (p1, p2, 3, p4) - (3.7)

For example, applying this relation repeatedly to the tensor six-point integrals we
will be left with the scalar six-point integral and five-point tensor integrals. The five-
point tensor integrals can be reduced using the same technique. Subsequently we can use
the method of [i9, BY, p{] to further numerically reduce all remaining integrals to the
basis of scalar 2-, 3- and 4-point integrals. This procedure turns out to be efficient and
straightforward to implement numerically.

4. Comparison with the literature

Since we have directly calculated the loop amplitudes with internal gluons and fermions
we can easily obtain the result for QCD with an arbitrary number n of flavours of quarks,

AQCD _ 4l %A[Iﬂ] . (4.1)

However since the analytic calculations in the literature are presented in terms of super-
symmetric theories we need to re-organize our results to compare with other authors.

4.1 Supersymmetry

Since we have calculated the amplitudes with massless spin 1, spin 1/2 and spin 0 particles
in the internal loop we can combine our results as follows

AN:4 _ A[l} + 4A[1/2] + 3A[0] , (4.2)
A./\f:l — A[1/2} +A[O] (43)

AN=4 50 constructed, describes an amplitude where the full supersymmetric A" = 4 mul-

tiplet runs in the loop, and AN=! denotes the contribution from an A" = 1 super-multiplet
running in the loop.



In analytic calculations the intention is to proceed in the opposite direction. Ampli-
tudes with multiplets of supersymmetric Yang-Mills in internal loops have much improved
ultra-violet behavior and are four-dimensional cut-constructible. For this reason, all of
these supersymmetric amplitudes have been calculated and most have been presented in a
form suitable for numerical evaluation. As far as six-gluon amplitudes with scalars in the
loop, Al% are concerned, three of the needed eight independent helicity amplitudes have
been published so far. Only in the helicity combinations where all contributions are known
can one reconstruct the ingredients needed for QCD amplitudes,

Al = gN=4 g qN=1 4 A0 (4.4)
A2l — pN=1 _ glol

4.2 Numerical results

As a preparatory exercise we performed a check of the four- and five-point gluon one-loop
amplitudes. We found agreement with the literature [53, B4, [L1].

We now turn to the amplitude for six-gluons which is the main result of this paper.
Our numerical program allows the evaluation of the one-loop amplitude at an arbitrary
phase space point and for arbitrary helicities. For a general phase space point it is useful
to re-scale all momenta so that the momenta of the gluons, (and the elements of the Gram
matrix), are of O(1) before performing the tensor reduction. Without loss of generality we
can assume that this has been done.

To present our numerical results we choose a particular phase space point with the six
momenta p; chosen as follows, (E, py, py,p=),

= g( 1, +sin 6, 4 cos @ sin ¢, 4- cos 0 cos ¢),
Py = g( 1, —sin @, — cos f sin ¢, — cos 0 cos ¢),
ps = £(1,1,0,0),
3
Py = %(1 cos 3,sin 3,0),
ps = /é(l cos «cos 3, cos acsin 3, sin av),
P6 = —P1 — P2 —P3 —P4— D5, (4.6)

where 0 = 7/4,¢ = w/6,a = 7/3,cos 3 = —7/19. Note that the energies of p; and po
are negative and p? = 0. In order to have energies of O(1) we make the choice for the
scale p = n = 6 [GeV]. As usual, p also denotes the scale which is used to carry the
dimensionality of the D-dimensional integrals. The results presented contain no ultraviolet
renormalization.

Analytic results require the specification of eight helicity combinations: all other am-
plitudes can be obtained by the parity operation or cyclic permutations. We choose these
eight combinations to be the two finite amplitudes (++++++, —+++++), the maximal
helicity violating amplitudes (— — + + ++,— + — + ++, — + + — ++), and the next-to-
maximal helicity violating amplitudes (— — —+++, — —+— 4+, —+—+—+). These eight



Helicity 1/€2 1/e 1 [Ref]/(Eq.#)
+++ 44+ 0 0
++++++ | (=1.034 +i2.790)10~% | (—9.615 + 14 3.708)10~8 —(0.826 + 14 2.514)10~7 [SN-A]
—+++++ 0 0 0
—+++++ | (1.568 41 2.438)10~8 (—0.511 +4 1.129)10~7 | —(3.073 + 14 0.1223)10~7 [SN-A]
——++++ —161.917 + i 54.826 —489.024 — i 212.415 —435.281 — 4 1162.971 @/(4.19)
——++++ | (0933 +14 1.513)107® | —(7.655 +14 0.440)1078 | —(—0.221 +14 1.834)10~7 _[SN-A]
—+ =+ ++ —33.024 + i 44.423 —169.358 + i 33.499 —330.119 — i 229.549 By/(4.19)
— 4+ —+++ | (—7.542+40.939)10"8 | —(1.157 +14 0.363)10~8 —(3.474 + 4 2.856)1078 _[SN-A]
—+4+—++ —0.5720 — i 3.939 6.929 — i 10.302 28.469 — i 5.058 B/ (4.19)
—++—++ | (—2.279 + 1.803)1078 | —(1.176 +4 0.399)10~7 (0.054 — i 3.307)10~7 [SN-A]
———+++ —6.478 — 4 10.407 6.825 — i 37.620 75.857 — i 47.081 4/(6.19)
— — — 44+ | (2.686 —1i 1.668)10~8 (1.232 44 0.554)10~7 (0.020 + 7 3.334)107 _[SN-A]
- —+—++ 14.074 — 4 22.908 80.503 — i 23.464 169.047 + i 93.601 B4/(6.24)
— — 4+ —++ | —(1.619+140.943)10~% | —(1.030 + i 8.234)108 (1.560 — 7 0.801)108 _[SN-A]
-—+-—+—+ 13.454 + 4 13.177 3.495 + i 58.632 —88.32 + 4 103.340 4/ (6.26)
—+—+—+ | (1.045—-40.113)10° | (=0.772 4+ 1.652))10~8 | (—7.795+ i 7.881))10~8 [SN-A]

Table 1: N'=4 colour-ordered sub-amplitudes evaluated at the specific point, eq. (@) The results
are given in the 'tHooft-Veltman regularization scheme. [SN-A] means the difference between the
semi-numerical result and the analytical one.

amplitudes would not be sufficient for a numerical evaluation, but the numerical approach
allows the evaluation of any helicity configuration at will.

In table [] we give results for a particular colour sub-amplitude AN=4(1,2,3,4,5,6) for
the above eight choices of the helicity. An overall factor of icr has been removed from all
the results in the tables [, [, and [

(4m) T(1 + e)T%(1 —¢)
T~ 1622 T(1-20) (47)

The results for the A/ = 4 amplitudes depend on the number of helicities of gluons circu-

lating in internal loops. For a recent description of regularization schemes see, for example,
ref. [f5]. Our results are presented in the 't Hooft-Veltman scheme. The translation to the
four-dimensional helicity scheme is immediate
N=4 N=4  CT
AFDH = At Hv + ?Atree . (48)
Note that analytic results from the literature are quoted in the four-dimensional helicity

scheme, which respects supersymmetry. These results have been translated to the 't Hooft-
Veltman scheme using eq. (.§) before insertion in our tables.

In table | we give results for the colour sub-amplitudes AN:1(1,2,3,4,5,6) for the
same eight helicity choices and where possible compare with analytical results.? Note that
because of the relation

= cr
AN 1|singulau" = ?Atree’ (49)

the column giving the single pole can as well be considered as a listing of the results for
the colour-ordered sub-amplitudes at tree graph level (stripped only of the overall factor
of 7).

*In eq. (5.16) of ref. @] for the degenerate case m=j-1=2 one has C,, = {j + 1,...,n — 1}, as can be
seen from figure 8 of this same paper. This point has also been made in ref. [@]



Helicity 1/€2 1/e 1 [Ref]/(Eq.#)
++++++ 0 0 0
++4++++ (—3.470 + i 9.320)10~° (—3.226 + 4 1.253)10~ % —(3.899 + i 8.969)10 8 [SN-A]
—+++++ 0 0 0
— 4+ 4+ (5.228 + 4 8.127)10~° (—1.678 + 4 3.775)10~ % —(1.013 44 0.2066)10~ 7 _[SN-A]
I 0 26.986 — i 9.1376 101.825 — i 52.222 [iz_zi]/(ag)
— — 4+ (—3.297 + i 5.194)10~° —(—2.104 + 4 0.344)10~ 8 (0.949 — i 4.895)10~8 SN-A]
[ETE TS 0 5.504 — i 7.404 21.811 — ¢ 29.051 B4i/(512)
— 4+ —+ 4+ | (—1.847 44 0.8566)107 10 —(6.141 4 i 4.633)107 10 (3.095 4 4 2.138)10~ 7 —SN-A]
E——— 0 0.09533 + ¢ 0.6565 —2.183 + 7 3.260 k4/(12)
— 44—+ (—7.599 + i 6.018)10~° —(3.929 + 4 1.304)10~ 8 (0.008 — 4 1.100)10~ "7 SN-A]
Tt 1+ 0 1.080 + i 1.735 0.722 + i 5.285 EIHG)
— — — 4+ (8.965 — i 5.555)10° (4.107 + 4 1.858)10 8 (0.002 + 4 1.114)10~7 — [SN-A]
——F —+7 0 —2.346 + i 3.819 —2.238 + i 17.687 kd1/(5.4,2.3)
— =+ —++ (—5.351 — i 2.825)10—° 0.204 + 2.204)10—8 (—3.891 44 1.237)10~ 8 — [SN-A]
—F—+ 7 0 —2.242 — 7 2.196 —1.721 — 4 7.433 bg/(5.13,2.3)
— 4 —+ -+ (1.124 — 4 0.2060)10~ 10 0.717 4 i2.947)10° (—1.049 4 i 3.134)10~ 8 [SN-A]

Table 2: N'=1 colour-ordered sub-amplitudes evaluated at the specific point, eq. (@) [SN] means
that the result is obtained using our semi-numerical code, while [SN-A] denotes the difference
between the semi-numerical result and the analytical one.

Helicity 1/€2 1/e 1 [Ref]/(Eq.#)
RN 0 0 (4.867 + 14 2.092)10~ 1 (bdl/(4.3)
++++++ | (3.6724149.749)107° | (—3.404 +14 1.238)10~® | —(3.016 +14 9.169)10~8 _[SN-A]
—+++++ 0 0 —3.194 + 7 0.6503 ldl/(4.10)
—+++++ | (5.921+i8.411)10~° | (—1.606 + i 4.051)10~% | —(1.086 + 4 0.038)10~7 [SN-A]
—— 4+ ++ 0 8.995 — i 3.046 43.089 — 7 20.288 b7/ (4.27,4.28)
— —++4+4+ | (1.280+140.002)108 (2.768 + 1 4.232)10~% | (—1.004 + 14 0.955)10~7 [SN-A]
—+—+++ | (1.045 —i 0.580)10~° 1.835 — i 2.468 9.752 — 4 11.791 [SN]
—++—++ | (=7.791+46.717)10~° | 3.178 102 +i 0.2188 —1.447 + 0.1955 [SN]
———+++ | (8.934 —i5.359)10~° 0.3599 + 7 0.5782 0.5617 + i 5.8166 [SN]
——+—++ | (0.1016 4+ 1.276)10~8 —0.7819 +14 1.273 —0.6249 + i 6.552 [SN]
—+—+—+ | (1.065—i 0.5417)10~8 —0.7475 — 4 0.7321 —1.298 — i 3.255 [SN]

Table 3: One loop six gluon colour-ordered sub-amplitudes with a scalar loop evaluated the specific
point eq. (f.§). [SN] means that the result is obtained using our semi-numerical code, while [SN-A]
denotes the difference between the semi-numerical result and the analytical one.

We note that for two of the helicity amplitudes — — + — ++ and — + — + —+ we were
unable to evaluate the analytic results numerically from the published version of ref. [2g.
This was due to the fact that calculating the residue of certain poles as required by the
formula in ref. 2], resulted in zero value denominators of sub-expressions.? Subsequent
to the appearance of the archive version of our paper, the authors of [2§ have submitted a
revised version (v4). We are now in agreement with the numbers derived from v4 as shown
in table .

Lastly in table B we give results for the colour sub-amplitudes A[O](l, 2,3,4,5,6) for
scalar gluons, for the same eight helicity choices.* For all amplitudes for which no analytic
result exists, we checked the gauge invariance of the amplitudes by changing the gluon
polarization. The gauge invariance was obeyed with a numerical accuracy of O (10_8). To
evaluate a single colour-ordered sub-amplitude for a complex scalar took 9 seconds on a

$We thank the authors of ref. [@] for confirming that there are problems with the numerical evaluation
of the formula for these amplitudes in the published version of their paper.

“In ref. [@] [v1-v3] the definition of F; has an overall sign missing, a typographical error not present in
the original calculation of the N' = 1 term in ref. [@]



2.8GHz Pentium processor. To evaluate the complete set of 64 possible helicities will be less
than 64 times longer, because the scalar integrals are stored during the calculation of the
first amplitude are applicable to all other configurations with the same external momenta.

We have not addressed the issue of the numerical stability of our code in the exceptional
regions. This issue has been addressed in detail in ref. [p(] for a five-leg process. We believe
that the issue can be addressed using similar methods or indeed by simply interpolating
over the singular regions.

5. Conclusions

In this paper we have presented numerical results which demonstrate that the complete one-
loop amplitude for six-gluon scattering is now known numerically. By forming multiplets
of SUSY Yang Mills in the internal loops, we were able to compare with most of the known
analytic results. In addition, we have presented numerical results for amplitudes which
are currently completely unknown. Note that the analytic and semi-numerical results are
complementary. The hardest piece to calculate analytically is the scalar contribution A,
which is the easiest for the semi-numerical approach. Thus it is possible that a numerical
code involving both semi-numerical and analytic results will be the most efficient and
expedient. Our results demonstrate the power of the semi-numerical method, which can
supplant the analytic method where it is too arduous and provide a completely independent
check where analytic results already exist.

After inclusion of the one-loop corrections to the other parton subprocesses involving
quarks and treatment of the exceptional configurations, it would be possible to proceed
to a NLO evaluation of the rate for four jet production. We intend to use these methods
to calculate NLO corrections to other processes which we consider to be of more pressing
phenomenological interest.
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